Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 71
1.
Mol Biol Rep ; 51(1): 567, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38656394

BACKGROUND: Metabolic plasticity gives cancer cells the ability to shift between signaling pathways to facilitate their growth and survival. This study investigates the role of glucose deprivation in the presence and absence of beta-hydroxybutyrate (BHB) in growth, death, oxidative stress and the stemness features of lung cancer cells. METHODS AND RESULTS: A549 cells were exposed to various glucose conditions, both with and without beta-hydroxybutyrate (BHB), to evaluate their effects on apoptosis, mitochondrial membrane potential, reactive oxygen species (ROS) levels using flow cytometry, and the expression of CD133, CD44, SOX-9, and ß-Catenin through Quantitative PCR. The activity of superoxide dismutase, glutathione peroxidase, and malondialdehyde was assessed using colorimetric assays. Treatment with therapeutic doses of BHB triggered apoptosis in A549 cells, particularly in cells adapted to glucose deprivation. The elevated ROS levels, combined with reduced levels of SOD and GPx, indicate that oxidative stress contributes to the cell arrest induced by BHB. Notably, BHB treatment under glucose-restricted conditions notably decreased CD133 expression, suggesting a potential inhibition of cell survival through the downregulation of CD133 levels. Additionally, the simultaneous decrease in mitochondrial membrane potential and increase in ROS levels indicate the potential for creating oxidative stress conditions to impede tumor cell growth in such environmental settings. CONCLUSION: The induced cell death, oxidative stress and mitochondria impairment beside attenuated levels of cancer stem cell markers following BHB administration emphasize on the distinctive role of metabolic plasticity of cancer cells and propose possible therapeutic approaches to control cancer cell growth through metabolic fuels.


3-Hydroxybutyric Acid , Apoptosis , Glucose , Lung Neoplasms , Membrane Potential, Mitochondrial , Mitochondria , Oxidative Stress , Reactive Oxygen Species , Humans , Oxidative Stress/drug effects , Glucose/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , A549 Cells , Mitochondria/metabolism , Mitochondria/drug effects , 3-Hydroxybutyric Acid/pharmacology , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Apoptosis/drug effects , Cell Survival/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Superoxide Dismutase/metabolism , AC133 Antigen/metabolism , AC133 Antigen/genetics
2.
Bioimpacts ; 14(2): 27618, 2024.
Article En | MEDLINE | ID: mdl-38505673

Introduction: Imidazo[1,2-a]pyridine derivatives with diverse pharmacological properties and curcumin, as a potential natural anti-inflammatory compound, are promising compounds for cancer treatment. This study aimed to synthesize a novel imidazo[1,2-a]pyridine derivative, (MIA), and evaluate its anti-inflammatory activity and effects on nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways, and their target genes, alone and in combination with curcumin, in MDA-MB-231 and SKOV3 cell lines. Methods: We evaluated the interaction between imidazo[1,2-a]pyridine ligand, curcumin, and NF-κB p50 protein, using molecular docking studies. MTT assay was used to investigate the impacts of compounds on cell viability. To evaluate the NF-κB DNA binding activity and the level of inflammatory cytokines in response to the compounds, ELISA-based methods were performed. In addition, quantitative polymerase chain reaction (qPCR) and western blotting were carried out to analyze the expression of genes and investigate NF-κB and STAT3 signaling pathways. Results: Molecular docking studies showed that MIA docked into the NF-κB p50 subunit, and curcumin augmented its binding. The MTT assay results indicated that MIA and its combination with curcumin reduced cell viability. According to the results of the ELISA-based methods, MIA lowered the levels of inflammatory cytokines and suppressed NF-κB activity. In addition, real-time PCR and Griess test results showed that the expression of cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) genes, and nitrite production were reduced by MIA. Furthermore, the western blotting analysis demonstrated that MIA increased the expression of inhibitory κB (IκBα) and B-cell lymphoma 2 (Bcl-2)-associated X proteins (BAX), and suppressed the STAT3 phosphorylation, and Bcl-2 expression. Our findings revealed that curcumin had a potentiating role and enhanced all the anti-inflammatory effects of MIA. Conclusion: This study indicated that the anti-inflammatory activity of MIA is exerted by suppressing the NF-κB and STAT3 signaling pathways in MDA-MB-231 and SKOV3 cancer cell lines.

3.
Obes Sci Pract ; 10(1): e716, 2024 Feb.
Article En | MEDLINE | ID: mdl-38263987

Introduction: Adipose triglyceride lipase (ATGL) is a crucial enzyme responsible for the release of fatty acids from various tissues. The expression of ATGL is regulated by insulin and this enzyme is linked to Insulin resistance (IR). On the other hand, ATGL-mediated lipolysis is connected to macrophage function and thus, ATGL is involved in inflammation and the pathogenesis of lipid-related disorders. This study aimed to investigate the correlation between ATGL, obesity, Metabolic Syndrome (MetS), and inflammation. Methods: A total of 100 participants, including 50 individuals with obesity and 50 healthy participants, were recruited for this study and underwent comprehensive clinical evaluations. Blood samples were collected to measure plasma lipid profiles, glycemic indices, and liver function tests. Additionally, peripheral blood mononuclear cells (PBMCs) were isolated and used for the assessment of the gene expression of ATGL, using real-time PCR. Furthermore, PBMCs were cultured and exposed to lipopolysaccharides (LPS) with simultaneous ATGL inhibition, and the gene expression of inflammatory cytokines, along with the secretion of prostaglandin E2 (PGE2), were measured. Results: The gene expression of ATGL was significantly elevated in PBMCs obtained from participants with obesity and was particularly higher in those diagnosed with MetS. It exhibited a correlation with insulin levels and Homeostatic Model Assessment for IR (HOMA-IR), and it was associated with lipid accumulation in the liver. Stimulation with LPS increased ATGL expression in PBMCs, while inhibition of ATGL attenuated the inflammatory responses induced by LPS. Conclusions: Obesity and MetS were associated with dysregulation of ATGL. ATGL might play a role in the upregulation of inflammatory cytokines and act as a significant contributor to the development of metabolic abnormalities related to obesity.

4.
PLoS One ; 18(10): e0293217, 2023.
Article En | MEDLINE | ID: mdl-37862340

BACKGROUND: Epigenetic modifications, particularly histone acetylation-deacetylation and its related enzymes, such as sirtuin 1 (SIRT1) deacetylase, may have substantial roles in the pathogenesis of obesity and its associated health issues. This study aimed to evaluate global histone acetylation status and SIRT1 gene expression in children and adolescents with obesity and their association with metabolic and anthropometric parameters. METHODS: This study included 60 children and adolescents, 30 with obesity and 30 normal-weight. The evaluation consisted of the analysis of global histone acetylation levels and the expression of the SIRT1 gene in peripheral blood mononuclear cells, by specific antibody and real-time PCR, respectively. Additionally, insulin, fasting plasma glucose, lipid profile and tumor necrosis factor α (TNF-α) levels were measured. Insulin resistance was assessed using the homeostasis model assessment of insulin resistance (HOMA-IR). Metabolic syndrome was determined based on the diagnostic criteria established by IDF. RESULTS: Individuals with obesity, particularly those with insulin resistance, had significantly higher histone acetylation levels compared to control group. Histone acetylation was positively correlated with obesity indices, TNF-α, insulin, and HOMA-IR. Additionally, a significant decrease in SIRT1 gene expression was found among obese individuals, which was negatively correlated with the histone acetylation level. Furthermore, SIRT1 expression levels showed a negative correlation with various anthropometric and metabolic parameters. CONCLUSION: Histone acetylation was enhanced in children and adolescents with obesity, potentially resulting from down-regulation of SIRT1, and could play a role in the obesity-associated metabolic abnormalities and insulin resistance. Targeting global histone acetylation modulation might be considered as an epigenetic approach for early obesity management.


Insulin Resistance , Pediatric Obesity , Humans , Adolescent , Child , Pediatric Obesity/genetics , Insulin Resistance/physiology , Sirtuin 1/genetics , Sirtuin 1/metabolism , Histones/metabolism , Tumor Necrosis Factor-alpha/metabolism , Acetylation , Leukocytes, Mononuclear/metabolism , Insulin/metabolism , Body Mass Index
5.
BMC Complement Med Ther ; 23(1): 315, 2023 Sep 11.
Article En | MEDLINE | ID: mdl-37697354

BACKGROUND: Excessive extracellular matrix (ECM) deposition in adipose tissue is a hallmark of fibrosis, leading to disrupted adipose tissue homeostasis and metabolic dysfunction. Hesperetin, a flavonoid compound, has shown promising anti-inflammatory, anti-obesity and anti-diabetic properties. Therefore, we investigated the anti-fibrotic effects of hesperetin, through targeting ECM components and matrix metalloproteinase enzymes. METHODS: 3T3-L1 cells were cultured in DMEM, containing 10% FBS and 1% penicillin/streptomycin. Cells were treated with a range of hesperetin concentrations, and the cell viability was determined using MTT assay. Subsequently, the expression of genes encoding collagen VI, osteopontin, matrix metalloproteinase-2 (Mmp-2) and Mmp-9 was analyzed using specific primers and real-time PCR technique. To evaluate protein levels of collagen VI and osteopontin, Western blotting was performed. RESULTS: Hesperetin affected the viability of 3T3-L1 adipocytes with IC50 of 447.4 µM, 339.2 µM and 258.8 µM (24 h, 48 and 72 h, respectively). Hesperetin significantly reduced the gene and protein expression of both collagen VI and osteopontin in 3T3-L1 pre-adipocytes, in a time- and dose-dependent manner. Hesperetin was also able to cause a remarkable decline in gene expression of Mmp2 and Mmp9. CONCLUSION: Hesperetin could potently reduce the production of markers of adipose tissue fibrosis and might be considered a potential anti-fibrotic compound in obesity. Thus, hesperetin has the potency to be used for the treatment of obesity-associated fibrosis.


Matrix Metalloproteinase 2 , Osteopontin , Adipocytes , Adipose Tissue
6.
Inflammation ; 46(5): 1966-1980, 2023 Oct.
Article En | MEDLINE | ID: mdl-37310644

Acetyl-11-keto-beta-boswellic acid (AKBA), a potent anti-inflammatory compound purified from Boswellia species, was investigated in a preclinical study for its potential in preventing and treating non-alcoholic fatty liver disease (NAFLD), the most common chronic inflammatory liver disorder. The study involved thirty-six male Wistar rats, equally divided into prevention and treatment groups. In the prevention group, rats were given a high fructose diet (HFrD) and treated with AKBA for 6 weeks, while in the treatment group, rats were fed HFrD for 6 weeks and then given a normal diet with AKBA for 2 weeks. At the end of the study, various parameters were analyzed including liver tissues and serum levels of insulin, leptin, adiponectin, monocyte chemoattractant protein-1 (MCP-1), transforming growth factor beta (TGF-ß), interferon gamma (INF-ϒ), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α). Additionally, the expression levels of genes related to the inflammasome complex and peroxisome proliferator-activated receptor gamma (PPAR-ϒ), as well as the levels of phosphorylated and non-phosphorylated AMP-activated protein kinase alpha-1 (AMPK-α1) protein, were measured. The results showed that AKBA improved NAFLD-related serum parameters and inflammatory markers and suppressed PPAR-ϒ and inflammasome complex-related genes involved in hepatic steatosis in both groups. Additionally, AKBA prevented the reduction of the active and inactive forms of AMPK-α1 in the prevention group, which is a cellular energy regulator that helps suppress NAFLD progression. In conclusion, AKBA has a beneficial effect on preventing and avoiding the progression of NAFLD by preserving lipid metabolism, improving hepatic steatosis, and suppressing liver inflammation.


Non-alcoholic Fatty Liver Disease , Rats , Male , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , AMP-Activated Protein Kinases/metabolism , Inflammasomes/metabolism , Fructose/metabolism , Fructose/pharmacology , Fructose/therapeutic use , Lipid Metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Rats, Wistar , Liver/metabolism , Diet , Inflammation/metabolism
7.
Mol Neurobiol ; 60(10): 5975-5986, 2023 Oct.
Article En | MEDLINE | ID: mdl-37391648

Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system. Artemisinin (ART) is a natural sesquiterpene lactone with an endoperoxide bond that is well-known for its anti-inflammatory effects in experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS. Tehranolide (TEH) is a novel compound with structural similarity to ART. In this study, we aimed to investigate the ameliorating effect of TEH on EAE development by targeting proteins and genes involved in this process and compare its effects with ART. Female C57BL/6 mice were immunized with MOG35-55. Twelve days post-immunization, mice were treated with 0.28 mg/kg/day TEH and 2.8 mg/kg/day ART for 18 consecutive days, and the clinical score was measured daily. The levels of pro-inflammatory and anti-inflammatory cytokines were assessed in mice serum and splenocytes by ELISA. We also evaluated the mRNA expression level of cytokines, as well as genes involved in T cell differentiation and myelination in the spinal cord tissue by qRT-PCR. Administration of TEH and ART significantly alleviated EAE signs. A significant reduction in IL-6 and IL-17 secretion and IL-17 and IL-1 gene expression in spinal cord were observed in the TEH-treated group. ART had similar or less significant effects. Moreover, TGF-ß, IL-4, and IL-10 genes were stimulated by ART and TEH in the spinal cord, while the treatments did not affect IFN-γ expression. Both treatments dramatically increased the expression of FOXP3, GATA3, MBP, and AXL. Additionally, the T-bet gene was reduced after TEH administration. The compounds made no changes in RORγt, nestin, Gas6, Tyro3, and Mertk mRNA expression levels in the spinal cord. The study revealed that both TEH and ART can effectively modulate the genes responsible for inflammation and myelination that play a crucial role in EAE. Interestingly, TEH demonstrated a greater potency compared to ART and hence may have the potential to be evaluated in interventions for the management of MS.


Artemisinins , Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Remyelination , Female , Mice , Animals , Interleukin-17 , Mice, Inbred C57BL , Inflammation/drug therapy , Cytokines/metabolism , Multiple Sclerosis/drug therapy , Anti-Inflammatory Agents/pharmacology , Artemisinins/pharmacology , Artemisinins/therapeutic use , RNA, Messenger/genetics
8.
Lab Med ; 54(5): 457-463, 2023 Sep 05.
Article En | MEDLINE | ID: mdl-36762837

OBJECTIVE: Two newly discovered adipokines, including Meteorin-like protein (Metrnl) and asprosin, have been implicated in glucose and insulin metabolism. This study aimed to investigate the associations of these adipokines with obesity in children and adolescents. METHODS: This study was performed on 35 normal-weight children and 35 children with obesity. Anthropometric and biochemical parameters were determined. Serum concentrations of Metrnl, asprosin, and insulin were measured using enzyme-linked immunosorbent assay. RESULTS: Metrnl level was significantly lower in obese children than normal-weight children. Additionally, Metrnl was negatively correlated with body mass index (BMI), insulin, waist-to-hip ratio, and homeostatic model assessment of insulin resistance (HOMA-IR). Our results also revealed that circulating asprosin levels were significantly increased in obese children compared to the control subjects and were positively correlated with BMI, insulin, HOMA-IR, cholesterol, and LDL-C. CONCLUSION: Obesity is accompanied by significant alterations in Metrnl and asprosin and therefore these adipokines, especially Metrnl, are suggested as new promising therapeutic targets for obesity and its associated metabolic imbalances.


Insulin Resistance , Metabolic Syndrome , Pediatric Obesity , Adolescent , Child , Humans , Metabolic Syndrome/epidemiology , Pediatric Obesity/epidemiology , Adipokines , Insulin
9.
DNA Cell Biol ; 42(2): 82-90, 2023 Feb.
Article En | MEDLINE | ID: mdl-36730721

The present study was designed to evaluate the effects of resveratrol, atorvastatin, and a combination of resveratrol and atorvastatin on expression levels of genes involved in the cholesterol metabolic pathway in the fatty liver of C57/BL6 mice. A high-fat diet was used to induce fatty liver in C57/BL6 mice treated with resveratrol, atorvastatin, or a combination of resveratrol and atorvastatin. Pathological and biochemical studies were performed. In addition, hepatic gene expressions of ATP-binding cassette transporter A1 (ABCA1), ABCG1, liver X receptor (LXR)α, scavenger receptor B1 (SR-B1), low-density lipoprotein receptor (LDLR), and miR33 were evaluated by the real-time PCR method, and the Western blot method was used to measure the ABCA1, ABCG1, and LXRα protein levels. Resveratrol and atorvastatin reduced fat accumulation in the liver of mice with fatty liver, and this effect was correlated with decreased blood glucose levels, triglyceride, cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol blood levels compared with the positive control (PC) group. In contrast to the animals of the PC group, fatty liver groups that received resveratrol and atorvastatin had a significant effect on the mRNA levels of the ABCA1, ABCG1, LXRα, SR-B1, LDLR, and miR33 genes. Moreover, resveratrol and atorvastatin administration elevated ABCA1 and ABCG1 and reduced LXRα protein expression. Obtained results showed that resveratrol and atorvastatin combination therapy can improve nonalcoholic fatty liver disease by targeting genes involved in cholesterol metabolism and miR33.


MicroRNAs , Non-alcoholic Fatty Liver Disease , Animals , Mice , Liver X Receptors/genetics , Liver X Receptors/metabolism , Atorvastatin/pharmacology , Resveratrol/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Diet, High-Fat/adverse effects , Cholesterol/metabolism , Lipoproteins, LDL/metabolism , ATP Binding Cassette Transporter 1/genetics , MicroRNAs/genetics
10.
Mediators Inflamm ; 2023: 5156320, 2023.
Article En | MEDLINE | ID: mdl-36687217

Background: Breast and ovarian cancers are two common malignancies in women and a leading cause of death globally. The aim of the present study was to explore the effects of a novel chalcone derivative 1-(4-(methylsulfonyl)phenyl)-3-(phenylthio)-3-(p-tolyl)propane-1-one (MPP) individually or combined with curcumin, a well-known herbal medicine with anticancer properties, as a new combination therapy on inflammatory pathways in breast and ovarian cancer cell lines. Methods: LPS-induced NF-κB DNA-binding activity and the levels of proinflammatory cytokines were measured in the MPP- and MPP-curcumin combination-treated MDA-MB-231 and SKOV3 cells by ELISA-based methods. The expression of COX2, INOS, and MMP9 genes and nitrite levels was also evaluated by real-time qRT-PCR and Griess method, respectively. IκB levels were evaluated by Western blotting. Results: MPP significantly inhibited the DNA-binding activity of NF-κB in each cell line and subsequently suppressed the expression of downstream genes including COX2, MMP9, and INOS. The levels of proinflammatory cytokines, as well as NO, were also decreased in response to MPP. All the effects of MPP were enhanced by the addition of curcumin. MPP, especially when combined with curcumin, caused a remarkable increase in the concentration of IκB. Conclusion: MPP and its coadministration with curcumin effectively reduced the activity of the NF-κB signaling pathway, leading to a reduced inflammatory response in the environment of cancer cells. Thus, MPP, either alone or combined with curcumin, might be considered an effective remedy for the suppression of inflammatory processes in breast and ovarian cancer cells.


Chalcones , Curcumin , Ovarian Neoplasms , Female , Humans , NF-kappa B/metabolism , Matrix Metalloproteinase 9 , Cyclooxygenase 2 , Cytokines/metabolism , I-kappa B Proteins , Ovarian Neoplasms/drug therapy
11.
Mol Biol Rep ; 49(10): 9409-9427, 2022 Oct.
Article En | MEDLINE | ID: mdl-36002655

BACKGROUND: Understanding the molecular mechanism underlying the pathophysiology of primary skeletal tumors is crucial due to the tumor-related complications, incidence at a young age, and tumor recurrence. METHODS AND RESULTS: The local expression pattern of MMP-9 as an active matrix-degrading protease was detected in 180 bone tissues, including 90 tumors and 90 noncancerous tissues, utilizing real-time qRT-PCR at the mRNA level and immunohistochemistry at the protein level. The correlation of the MMP-9 expression level with the patient's clinical pathological characteristics and the aggressiveness of the tumor was evaluated. The diagnostic significance of MMP-9 and the model of association of variables and MMP-9 expression and their predictive values were determined. Mean mRNA expression was higher in all types of primary bone tumors than their paired non-cancerous tissues. Osteosarcoma and Ewing's sarcoma expressed higher levels of MMP-9 compared to benign giant cell tumors, and the MMP-9 expression level was significantly correlated with the size, metastasis, and recurrence of the malignant tumor. A consistent expression pattern was demonstrated for MMP-9 protein levels in tissues. In addition, the MMP-9 gene and protein levels significantly discriminate between bone tumors and normal tissue, as well as benign and malignant tumors, and could predict potentially malignant traits such as tumor grade and metastasis. CONCLUSIONS: The data propose that MMP-9 may be involved in the proliferation and invasion of primary bone tumors and has the potential to monitor and treat the progression of malignant tumors.


Bone Neoplasms , Matrix Metalloproteinase 9 , Bone Neoplasms/metabolism , Bone and Bones/metabolism , Humans , Matrix Metalloproteinase 9/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation
12.
BMC Complement Med Ther ; 22(1): 145, 2022 May 23.
Article En | MEDLINE | ID: mdl-35606804

BACKGROUND: Use of natural products has been proposed as an efficient method in modulation of immune system and treatment of cancers. The aim of this study was to investigate the potential of cryptotanshinone (CPT), naringenin, and their combination in modulating the immune response towards Th1 cells and the involvement of JAK2/STAT3 signaling pathway in these effects. METHODS: Mouse models of delayed type hypersensitivity (DTH) were produced and treated with naringenin and CPT. The proliferation of spleen cells were assessed by Bromodeoxyuridine (BrdU) assay. Flowcytometry and enzyme-linked immunosorbent assay (ELISA) tests were employed to evaluate subpopulation of T-lymphocytes and the levels of cytokines, respectively. The JAK/STAT signaling pathway was analyzed by Western blotting. RESULTS: We showed higher DTH, increased lymphocyte proliferation, decreased tumor growth and reduced JAK2/STAT3 phosphorylation in mice treated with naringenin and CPT. Moreover, a significant decline in the production of IL-4 and an upsurge in the production of IFN-γ by splenocytes were observed. Additionally, the population of intra-tumor CD4+CD25+Foxp3+ T cells was significantly lower in naringenin + CPT treated animals than that in controls. CONCLUSION: Naringenin-CPT combination could exert immunomodulatory effects, suggesting this combination as a novel complementary therapeutic regimen for breast cancer.


Neoplasms , T-Lymphocytes, Regulatory , Animals , Flavanones , Lymphocyte Activation , Mice , Phenanthrenes
13.
Anticancer Drugs ; 33(1): e311-e326, 2022 01 01.
Article En | MEDLINE | ID: mdl-34419959

Cancer stem cells (CSCs) play an essential role in cancer development, metastasis, relapse, and resistance to treatment. In this article, the effects of three synthesized ZnO nanofluids on proliferation, apoptosis, and stemness markers of breast cancer stem-like cells are reported. The antiproliferative and apoptotic properties of ZnO nanoparticles were evaluated on breast cancer stem-like cell-enriched mammospheres by MTS assay and flowcytometry, respectively. The expression of stemness markers, including WNT1, NOTCH1, ß-catenin, CXCR4, SOX2, and ALDH3A1 was assessed by real-time PCR. Western blotting was used to analyze the phosphorylation of Janus kinase 2 (JAK2) and Signal Transducer and Activator of Transcription 3 (STAT3). Markers of stemness were significantly decreased by ZnO nanofluids, especially sample (c) with code ZnO-148 with a different order of addition of polyethylene glycol solution at the end of formulation, which considerably decreased all the markers compared to the controls. All the studied ZnO nanofluids considerably reduced viability and induced apoptosis of spheroidal and parental cells, with ZnO-148 presenting the most effective activity. Using CD95L as a death ligand and ZB4 as an extrinsic apoptotic pathway blocker, it was revealed that none of the nanoparticles induced apoptosis through the extrinsic pathway. Results also showed a marked inhibition of the JAK/STAT pathway by ZnO nanoparticles; confirmed by downregulation of Mcl-1 and Bcl-XL expression. The present data demonstrated that ZnO nanofluids could combat breast CSCs via decreasing stemness markers, stimulating apoptosis, and suppressing JAK/STAT activity.


Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Nanoparticles , Neoplastic Stem Cells/drug effects , Quantum Dots , Zinc Oxide/pharmacology , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Carriers , Fas Ligand Protein/drug effects , Humans , Intracellular Signaling Peptides and Proteins/drug effects , Signal Transduction/drug effects , Zinc Oxide/administration & dosage
14.
J Educ Health Promot ; 10: 376, 2021.
Article En | MEDLINE | ID: mdl-34912912

BACKGROUND: Colorectal cancer is the third leading to death type of cancer in the world. The therapeutic guideline varied between different methods. As the main therapeutic guideline is chemotherapy, recent studies had shown utilization of natural products in combination with conventional medication, elevate the efficiency of chemotherapeutic methods. Kombucha is a traditional beverage obtained from the fermentation of green tea as a rich source of flavonoid medicinal plant. This study aimed to evaluate the natural potential of combination therapy of this natural product with doxorubicin as a chemotherapeutic agent. MATERIALS AND METHODS: The study was performed as in vitro evaluation of biological activity of kombucha on HCT-116 cell line (human colon cancer cell line). The cytotoxic effect of different kombucha beverages (fermented green tea) in comparison with green tea extract was evaluated by dimethylthiazolyl tetrazolium bromide (MTT) assay. In the next step, anticancer activity of doxorubicin as a general guideline chemotherapeutic agent in combination with kombucha was evaluated by cell cycle analysis and apoptosis assay flow cytometry. Apoptotic genes expression pattern was determined using real-time polymerase chain reaction. The experiments were designed in three independent replications and statistically analyzed using SPSS software. RESULTS: The results show that kombucha compared with the green tea extract caused more (1.2 fold) early apoptosis induction and G0/G1 phase arrest. Moreover, kombucha increased the expression levels of p21, p53, and B-cell leukemia/lymphoma 2 (Bcl-2)-associated X protein genes (2, 2.5, and 1.5 fold, respectively) while it decreased Bcl-2 gene expression level (5-8 fold) compared with doxorubicin alone. Combination of kombucha with doxorubicin shows 2-fold increased G0/G1 phase compared with the doxorubicin treatment. CONCLUSION: This result indicated that kombucha caused boosted anticancer activity of doxorubicin agent. These findings suggest that kombucha may be has an assistor and useful role in colorectal cancer treatment align with chemotherapy.

15.
Iran J Pharm Res ; 20(3): 647-653, 2021.
Article En | MEDLINE | ID: mdl-34904015

The aim of this study was to compare the insulin glargine and detemir effects on hormons affecting appetite and metabolic control of patients with type 1 diabetes. This single-blind randomized clinical trial was conducted on patients aged 2 to 18 years with type 1 diabetes who were referred to the endocrinology department of Ali-Asghar Children Hospital in Tehran, from April to September 2019. Patients were randomly allocated to receive insulin Glargine or insulin Detemir. Before starting treatment, blood samples were obtained for routine biochemical tests and factors affecting appetite, including Leptin, Ghrelin, Aguti-Related Peptide (AGRP), and Peptide-YY3-36 (PYY 3-36). Patients were evaluated monthly and insulin dose was adjusted based on target glucose and carbohydrate counting. At the end of three months, the anthropometric values , HbA1C and factors that influence appetite were measured again in both groups, and the results were compared. A total of 40 children with a new onset of type 1 diabetes under 18 years who were hospitalized in Ali Asghar Children Hospital were randomly assigned into two groups as Glargine (n = 20) and Detemir (n = 20). The mean age of patients in the Glargine group was 11.07 ±4.18 years and in the Detemir group was 8.06 ± 3.56. In Glargine group HbA1C, Cholesterol, LDL, AGRP significantly decreased and leptin increased after treatment., while the change of BMI Z-score was not significant. There was a significant decrease of HbA1C in the Detemir group after treatment but there was no significant change of other variables. There was no significant difference for all the variables between two groups after treatment. There was no significant difference for BMI, metabolic control and appetite hormones between Glargine and Detemir groups. BMI-z score did not change in Glargine group while leptin increased and AGRP decreased after treatment. HbA1C decreased significantly after treatment in both groups.

16.
J Med Case Rep ; 15(1): 535, 2021 Oct 25.
Article En | MEDLINE | ID: mdl-34696808

BACKGROUND: Permanent neonatal diabetes mellitus (PNDM) presents with dehydration and hyperglycemia, which usually occurs during the first 12 months of life. Activating mutations of beta-cell adenosine triphosphate-sensitive potassium [KATP] channel subunits that cause opening of the channel are associated with PNDM. Some patients with PNDM respond to administration of a sulfonylurea derivative, which has long action on blood glucose even during hypoglycemia and has an apoptotic effect on beta cells. However, there have been no reports regarding treatment with meglitinide (repaglinide), which has rapid and short duration of action during the rise in blood glucose after meals that is more similar to beta cell function. It has no effects during hypoglycemia, so it does not cause neurological damage, and has no apoptotic effect on beta cells. We report herein the effects of repaglinide administration in the management and clinical outcome of two patients with PNDM during 9 and 10 years of follow-up. CASE PRESENTATION: Two Iranian infants were brought to our institution with poor general condition, dehydration, lethargy, and poor feeding. They had diabetic ketoacidosis at 52 days and 3.5 months of age, respectively. Their genetic analysis revealed mutations in the KCNJ11 gene encoding KIR6.2, so they both had PNDM. After treatment of diabetic ketoacidosis with insulin, they responded to sulfonylurea (glibenclamide) treatment, but were switched to repaglinide because of blood sugar fluctuations in terms of hyper- and hypoglycemia. Repaglinide was administered with the dosage of 0.04 mg/kg/day divided before every meal. RESULTS: The patients were 10 and 9 years old at the last visit, with normal growth parameters. The values of self-monitored blood glucose were well-controlled, and the hemoglobin A1C (HbA1C) levels ranged from 3.6 to 6.4% during the follow-up period. There was no complication of diabetes, neurological disorder, or adverse effects related to repaglinide. CONCLUSION: In every neonate or infant < 6 months of age with diabetes mellitus, PNDM should be considered. A trial of oral repaglinide can be performed and substituted for glibenclamide for prevention of hypoglycemia, neurological damage, and apoptosis of beta cells during long-term administration.


Diabetes Mellitus , Hypoglycemic Agents , Benzamides , Carbamates , Humans , Hypoglycemic Agents/therapeutic use , Iran , Mutation , Piperidines
17.
Avicenna J Med Biotechnol ; 13(3): 149-165, 2021.
Article En | MEDLINE | ID: mdl-34484645

BACKGROUND: Overexpression of miR-21 is a characteristic feature of patients with Multiple Sclerosis (MS) and is involved in gene regulation and the expression enhancement of pro-inflammatory factors including IFNγ and TNF-α following stimulation of T-cells via the T Cell Receptor (TCR). In this study, a novel integrated bioinformatics analysis was used to obtain a better understanding of the involvement of miR-21 in the development of MS, its protein biomarker signatures, RNA levels, and drug interactions through existing microarray and RNA-seq datasets of MS. METHODS: In order to obtain data on the Differentially Expressed Genes (DEGs) in patients with MS and normal controls, the GEO2R web tool was used to analyze the Gene Expression Omnibus (GEO) datasets, and then Protein-Protein Interaction (PPI) networks of co-expressed DEGs were designed using STRING. A molecular network of miRNA-genes and drugs based on differentially expressed genes was created for T-cells of MS patients to identify the targets of miR-21, that may act as important regulators and potential biomarkers for early diagnosis, prognosis and, potential therapeutic targets for MS. RESULTS: It found that seven genes (NRIP1, ARNT, KDM7A, S100A10, AK2, TGFßR2, and IL-6R) are regulated by drugs used in MS and miR-21. Finally, three overlapping genes (S100A10, NRIP1, KDM7A) were identified between miRNA-gene-drug network and nineteen genes as hub genes which can reflect the pathophysiology of MS. CONCLUSION: Our findings suggest that miR-21 and MS-related drugs can act synergistically to regulate several genes in the existing datasets, and miR-21 inhibitors have the potential to be used in MS treatment.

18.
Int J Hypertens ; 2021: 6748515, 2021.
Article En | MEDLINE | ID: mdl-34422408

BACKGROUND: Angiopoietin-like protein 2 (ANGPTL2) is one of the adipocyte-derived inflammatory factors which connects obesity to insulin resistance. ANGPTL3 has a direct role in regulation of lipid metabolism. The objective of this study was to evaluate ANGPTL2 and ANGPTL3 in childhood obesity and their relationship with metabolic syndrome. METHODS: 70 children and adolescents, 35 obese and 35 normal-weight subjects, were enrolled in this research after complete clinical examination and anthropometric evaluations. Serum ANGPTL2 and ANGPTL3 and insulin were measured by enzyme-linked immunosorbent assay (ELISA). Homeostatic model assessment of insulin resistance (HOMA-IR) was calculated and used to estimate insulin resistance (IR). Colorimetric methods were used for the assessment of fasting plasma glucose (FPG), LDL-C, HDL-C, total cholesterol (TC), and triglyceride (TG). RESULTS: The levels of ANGPTL2 and ANGPTL3 were significantly higher in obese subjects than those in controls, but they did not differ significantly in subjects with or without IR. ANGPTL3 was found to be significantly elevated in obese children with metabolic syndrome (MetS) in comparison with those without MetS. Both of the studied ANGPTLs were positively correlated with BMI, systolic blood pressure (SBP), diastolic blood pressure (DBP), TC, and LDL-C. The correlation between ANGPTL3 and either TC or LDL-C remained significant after adjusting for BMI. CONCLUSION: Serum ANGPTL2 and ANGPTL3 were elevated in obesity and associated with blood pressure and indices of metabolic syndrome, suggesting that they might be involved in the advancement of obesity-related hypertension and metabolic syndrome.

19.
J Clin Lab Anal ; 35(9): e23957, 2021 Sep.
Article En | MEDLINE | ID: mdl-34399004

BACKGROUND: Sestrin2 and beclin1 are two newly found proteins that have essential roles in autophagy. This study attempted to evaluate the plasma concentrations of sestrin2 and beclin1 in women with polycystic ovary syndrome (PCOS) and healthy controls and to explore the clinical value of these proteins as novel biomarkers for PCOS. METHODS: In this case-control study, plasma levels of sestrin2 and beclin1, fasting blood sugar (FBS), lipid profile, insulin, and androgens were evaluated in 63 women (31 patients and 32 controls). Sestrin2 and beclin1 levels were determined using enzyme-linked immunosorbent assay (ELISA). Descriptive statistics, correlation coefficients, logistic regression, and ROC curve analyses were used in this study. RESULTS: Plasma sestrin2 levels of the subjects with PCOS (40.74 [24.39-257.70]) were significantly lower than those of healthy subjects (255.78 [25.46-528.66]; p-value = 0.040). ROC curve analysis showed that a cutoff value of 420.5 ng/L had an appropriate sensitivity (83.87%) and specificity (46.88%) for discriminating individuals with and without PCOS, with the area under the curve (95% CI) of 0.648 (0.518 to 0.764), p = 0.036. There were no statistically significant differences between the two groups concerning plasma levels of beclin1, biochemical parameters, blood pressure, and anthropometric features. CONCLUSION: Our findings highlight the dysregulation of sestrin2 as a marker of autophagy in PCOS and its potential usefulness as a novel biomarker for PCOS. Further research is needed to better understand the role of this protein in the pathophysiology of PCOS and its value as a diagnostic tool for the evaluation of PCOS patients.


Beclin-1/blood , Biomarkers/blood , Nuclear Proteins/blood , Polycystic Ovary Syndrome/diagnosis , Adult , Case-Control Studies , Female , Humans , Polycystic Ovary Syndrome/blood , Prognosis , ROC Curve
20.
J Oncol ; 2021: 2303946, 2021.
Article En | MEDLINE | ID: mdl-34239561

Breast cancer (BC) is one of the most common lethal diseases in women worldwide. Recent evidence has shown that covalently closed Circular RNA (circRNA) deregulation is observed in different human malignancies and cancers. Lately, circRNAs are being considered as a new diagnostic biomarker; however, the mechanism and the correlation of action between circRNAs and BC are still unclear. In the present study, we try to investigate the expression level of hsa_circ_0005046 and hsa_circ_0001791 in BC. By using quantitative real-time polymerase chain reaction (qRT-PCR), expression profiles of candidate circRNAs were detected in 60 BC tissue and paired adjacent normal tissues. Furthermore, the clinicopathological relation and diagnostic value were estimated. Our results showed the higher expression levels of hsa_circ_0005046 and hsa_circ_0001791 in BC tissues compared to paired adjacent normal tissues with P value (P < 0.0001) for both circRNAs, and the area under the receiver operating characteristic (ROC) curve was 0.857 and 1.0, respectively; in addition, a total 10 miRNAs that can be targeted by each candidate circRNAs was predicted base on bioinformatics databases. Taken together, for the first time, the results of our study presented high expression levels of hsa_circ_0005046 and hsa_circ_00017916 in BC; although there was no direct correlation between the high expression level of both circRNAs with clinic pathological factors, except hsa_circ_0001791 association with estrogen receptors (ER), high ROC curve in expressed samples indicated that both circRNAs could be used as a new diagnostic biomarker for BC. Moreover, miRNAs selection tools predicted that miR-215 and mir-383-5p which have a tumor suppressor role in BC can be targeted by our candidate circRNAs to affect the PI3K/AKT pathway; in conclusion, further studies are required to validate the oncogene role of our candidate circRNAs through the PI3k pathway.

...